Mediterranean precipitation climatology, seasonal cycle, and trend as simulated by CMIP5
نویسندگان
چکیده
[1] Winter and summer Mediterranean precipitation climatology and trends since 1950 as simulated by the newest generation of global climate models, the Coupled Model Intercomparison Project phase 5 (CMIP5), are evaluated with respect to observations and the previous generation of models (CMIP3) used in the Intergovernmental Panel on Climate Change Fourth Assessment Report. Observed precipitation in the Mediterranean region is defined by wet winters and drier summers, and is characterized by substantial spatial and temporal variability. The observed drying trend since 1950 was predominantly due to winter drying, with very little contribution from the summer. However, in the CMIP5 multimodel mean, the precipitation trend since 1950 is evenly divided throughout the seasonal cycle. This may indicate that in observation, multidecadal internal variability, particularly that associated with the North Atlantic Oscillation (NAO), dominates the wintertime trend. An estimate of the observed externally forced trend shows that winter drying dominates in observations but the spatial patterns are grossly similar to the multimodel mean trend. The similarity is particularly robust in the eastern Mediterranean region, indicating a radiatively forced component being stronger there. Results of this study also reveal modest improvement for the CMIP5 multi-model ensemble in representation of the observed six month winter and summer climatology. The results of this study are important for assessment of model predictions of hydroclimate change in the Mediterranean region, often referred to as a “hotspot” of future subtropical drying. Citation: Kelley, C., M. Ting, R. Seager, and Y. Kushnir (2012), Mediterranean precipitation climatology, seasonal cycle, and trend as simulated by CMIP5, Geophys. Res. Lett., 39, L21703, doi:10.1029/2012GL053416.
منابع مشابه
The East African Long Rains in Observations and Models
Decadal variability of the East African precipitation during the season of March–May (long rains) is examined and the performance of a series of models in simulating the observed features is assessed. Observational results show that the drying trend of the long rains is associated with decadal natural variability associated with sea surface temperature (SST) variations over the Pacific Ocean. E...
متن کاملAssessment of sea ice simulations in the CMIP5 models
The historical simulations of sea ice during 1979 to 2005 by the Coupled Model Intercomparison Project Phase 5 (CMIP5) are compared with satellite observations, Global Ice-Ocean Modeling and Assimilation System (GIOMAS) output data and Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) output data in this study. Forty-nine models, almost all of the CMIP5 climate models and earth sys...
متن کاملRefinement of the daily precipitation simulated by the CMIP5 models over the north of the Northeast of Brazil
The ability of the Artificial Neural Network (ANN) and the Multiple Linear Regression (MLR) in reproducing the area-average observed daily precipitation during the rainy season (Feb–Mar–Apr) over the north of the Northeast of Brazil (NEB) is examined. For the present climate of Dec-Jan-Feb from 1963 to 2003 period these statistical models are developed and validated using the observed daily pre...
متن کاملThe land surface model component of ACCESS: description and impact on the simulated surface climatology
The land surface component of the Australian Community Climate and Earth System Simulator (ACCESS) is one difference between the two versions of ACCESS used to run simulations for the Coupled Model Intercomparison Project (CMIP5). The Met Office Surface Exchange Scheme (MOSES) and the Community Atmosphere Biosphere Land Exchange (CABLE) model are described and compared. The impact on the simula...
متن کاملEvaluation of the performance of the CMIP5 General Circulation Models in predicting the Indian Ocean Monsoon precipitation over south Sistan and Baluchestan, using the past hydrological changes in the region
1-Introduction Climate change refers to any significant change in the existing mean climatic conditions within a certain time period (Jana and Majumder, 2010; Giorgi, 2006). Earth's climate change through history has happened (Nakicenovic et al., 2000; Bytnerowicz et al., 2007). 2-Materials and methods In this study, daily precipitation and daily maximum (Tmax) and daily minimum (Tmin) tempera...
متن کامل